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INTRODUCTION 
Engineers have long been using the term "sensitivity" to denote 

a quantitative measure of the variation of one system parameter due to 

variation of another system parameter. Different mathematical de- 
2 3  finitions of sensitivity have been proposed by Bode', Truxal , Ur 

and Chang4 for different purposes. 
definitions are not always convenient for practical engineering uses. 
For instance, does a sensitivity equal to zero really imply the complete 
insensitiveness of a system? And, does a measure of infinite sensi- 
tivity truly mean an infinite change of one system parameter with re- 
spect to a finite variation of another parameter?' 

However, it will be shown that these 

For engineering purpc?ses, 8 g ~ d  definition of sensitivity 
...------- uc:a3uLt: shouid have the following qualities: 

1. significance 
2 .  reliability 

nvenience in use 2dgg bject of this paper is to review the various definitions of 
"sensitivity", and to propose the more satisfactory mathematical de- 

finitions of the "pole sensitivity of a feedback system" (hereafter 
called "pole sensitivity" for simplicity) for engineering applications. 

A mathematical definition of pole sensitivity which is more con- 

venient for engineering application will be proposed. 
these definitions and their practical reliability will also be demon- 
strated. 

The merits of 
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OF CURRENT LITERATURE ON SENSITIVlTI FUNCTIONS 
Bode and Truxal have defined the sensitivity 1 2 function as 

(1) 
X 

which gives the variation of a parameter, or a function, Q due to the 
variation of another parameter, or function, x. This definition was 

originally created as a measure of rzlative variation between the 
closed-loop gain and one open-loop parameter of a feedback system. 

Attempting to use Eq. (1) as a pole sensitivity such that Q 

may represent any closed-loop pole and x any open-loop parameter gives 

difficulties under certain conditions. These difficulties will be 
indicated in the following: 

Consider a closed-loop system, Fig. 1, having an open-loop trans- 
fer function. 

where K is the gain constant and q(s) and p(s) are polynomials in s .  

The closed-loop transfer function is 

Since the dynamic characteristics of a system are largely dependent on 
the system's pole locations, it is very often desired to know the vari- 
ation of the closed-loop poles of a feedback system due to the variation 

of the open-loop gain constant, or time constants (or equivalently, 
open-loop poles or zeros). 

The pole sensitivity, as defined in Eq. (l), for the variation of 

a closed-loop pole due to the variation of the open-loop gain, open- 
loop pole or open-loop zero is as follows. Let s .  represent the closed- 

loop poles and K ,  ai, 
poles, and open-loop zeros, respectively. 

represent the sensitivity functions of s with respect to K, 

and pi, respectively. 

1 
pi, represent the open loop gain, open-loop 

S S And let S K j ,  s j ,  and S s j  
ai pi 

di, j 
Then (see Appendix I) 
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where 

s -pi ui 

S s - Pi sj - Pi 
P i  = -sK j S 

k 
S 

s j =- 

p i  j j 

1s = s 
j 

r i s  the m u l t i p l i c i t y  of the open-loop p o l e d .  and u i s  the  multi-  

p l i c i t y  of the  open-loop pole Pi. 
of the closed-loop funct ion T ( s ) ,  ks 
evaluated a t  s = s . 

i 1) i 
Note t h a t  when s i s  a simple pole 

j 
i s  j u s t  the  residue of T ( s )  

j 
j 

When s i s  a mult iple  pole of T ( s ) ,  k , as given by E q s . ( 7 )  
j 

becomes i n f i n i t e .  Therefore, E q s .  ( 4 ) ,  (5) and ( 6 )  are  not defined. 

The i n f i n i t e  change of a closed-loop p o l s  due t o  a d i f f e r e n t i a l  change 

of any open-loop parameter is  very o f t en  a poor approximation f o r  an 

incremental change of t h i s  same open-loop parameter. Therefore, sensi-  

t i v i t y  measures obtained from E q s .  ( 4 ) ,  (5) and ( 6 )  of ten  appear t o  be 

inconvenient f o r  the  p r a c t i c a l  engineering use.  The following example 

w i l l  i l l u s t r a t e  t h i s  inconvenience. 

Consider the feedback system shown i n  Fig.  1. The open-loop 

t r a n s f e r  funct ion and the  closed-loop t r a n s f e r  funct ion a re  

25 
G1(s) = s(s + 10) 

C 25 
2 T1(s) = T(S) = 

(s  + 5) 



respectively. The unit-step respoise of Eq. (9) is 

cl(t) = 1 - e -5t - 5t e-5t 

4 

Assuming that the open-loop pole is changed 20% from its original value, 

one then obtains 
25 

= s(s + 12) 

(12) C 25 T ' ( s )  = $s) = 
s2 + 12s + 25 

and the new unit-step response of Eq. (12) is 

-2.683t + 0.5e -9.317t c'(t) = 1 - 1.5e 
E q s .  (10) and (13) are plotted in Fig. 2$ which indicates a change of 
about 14% in the rise time response of the closed-loop system due to a 

20% change of the open-loop pole. However, in using E q s .  (4), (5) or 
( 6 )  one finds that the sensitivity of the closed-loop pole at s = -5 is 
infinity, indicating an unlimited change in the closed-loop charac- 

teristics due to a very slight change of any open-loop quantity. 
shows that the sensitivity functions defined in Eqs. ( 4 ) ,  (5) and ( 6 )  

are indeed inconvenient when the closed-loop transfer function possesses 
multiple poles. 

This 

Furthermore, when a pole s of the closed-loop transfer function 
is at the origin, as is often the case in a sampled-data control system, 

all sensitivity measures obtained from E q s .  ( 4 ) ,  (5) and ( 6 )  are again 
infinity. 

j 

Now, consider a sampled-data system as shown in Fig. 3 where 

and 

G ( z )  = 1.2~-~(1 - 0.833~~') 
-lI2 

, 
(1 - z 

T(z) = 1.22-l(1 - 0.833~-l) 
(1 - 0.82-l) (159 

which has a pole at the origin. The unit-step response as shown in 
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Fig .  4 i s  

C ( z )  = 1.22-1 + 1 . 1 6 ~ - ~  + 1 . 1 2 8 ~ - ~  + 1 . 1 0 2 4 ~ ~ ~  + 1 . 0 8 2 ~ ~ ~  

(16) 
+ 1 . 0 6 5 6 ~ - ~  + 1.0525~-~ + 1.0422 -8 + ----. 

I f  open-loop gain i s  changed by 20%, the  above equations become 

G ' ( z )  = 1.44z-'(l - 0.8332-I) 
-5 Y 

(1 - z 

(18) 
T'(z) = 1.442-'(1 - 0.833z-') 

-2 1 - 0,562:' - 0.22 
and 

C'(z) = 1.44z-' + 1 . 0 4 6 4 ~ - ~  + 1.11398~-~ + 1.07312~-~ 
7 + 1.06368~-~ + 1.05026~~' + 1.01736~~' + 1.00769~-~ + --- 

(19) 
Again r e f e r r i n g  t o  Fig.  4 and comparing c(nT) with c'(nT), one can 

e a s i l y  see t h a t  the change of the closed-loop c h a r a c t e r i s t i c s  due t o  a 

20% change of open-loop gain, i s  not as detr imental  as t h a t  implied by 

the  i n f i n i t e  s e n s i t i v i t y  obtained by using Eq.  (4). 
Fina l ly ,  one can e a s i l y  see from E q s .  (5) and (6) t h a t  when the 

open-loop funct ion has a pole,  o r  zero, a t  the  o r i g i n  the  s e n s i t i v i t y  

of the closed-loop pole due t o  a va r i a t ion  of t h i s  open-loop pole ,  o r  

zero,  i s  zero; thus ind ica t ing  a complete i n s e n s i t i v i t y  of the closed- 

loop c h a r a c t e r i s t i c s .  

Now again consider Fig.  1 with the following open-loop and closed- 

loop t r a n s f e r  functions 

2 
s(s + 3) G(s) = 

and 

2 
T(s)  = (s + l ) ( s  + 2) 

The uni t - s tep  response of the system i s  then 

(22) 
-2t c ( t )  = 1 - 2e-t + e 

If the open-loop pole a t  the o r i g i n  d r i f t s  t o  s = -0.2, E q s .  (20), (21) 



6 

and (22) then become, 

and 

2 
(s  + 0.2)(s + 3) , 

2 

s + 3.1s + 2.3 
. T'(s) = 2 

-2.563t c'(t) = 0.8696 - 1 . 1 e - O ~ ~ ~ ~  + 0.2305e ._ 
Comparing E q s .  (22) and (25), which are plotted in Fig. 5, indicates 
a closed-loop gain change of 13% and rise-time change of 78%. These 
results completely disagree with the zero sensitivity obtained from 

Eq.  (5). 
The above examples .demonstrate that the form of Bode-Truxal's 

sensitivity function, E q .  (l), is troublesoma when used as a measure of 
a pole sensitivity under the 'followiqg t:onditions: 

(i) When the pole of the closed-loop transfer function, whose 
sensitivity is desired, has multiplicity greater than one. 
When the pole of the closed-loop transfer function, whose 
sensitivity is desired, is at the origin. 

(ii) 

(iii) When the pole, or zero, of thnz open-loop transfer function, 
with respect to which the dlosed-loop sensitivity is de- 

sired, is at the origin. 

The first two conditions have been shcwri t c  yield infinite sensitivity 
while the third condition yields zero sansitivity. 

It should be mentioned that the Bcde-Truxal sensitivity definition, 
E q .  (1) does give correct sensitivity measure under the condition implied 
by its mathematical form; that is, when the change of x is a differential, 

dx. However, in nearly every practical system the change of open-loop 
parameter x is an increment Ax rather than a differential. Therefore, 

E q .  (1) has practical significance only  if 

d 1nQ G 1nQ 
d lax L i  lmx  - - 

E q .  (26)  is not true under the three conditions mentioned above. 
3 Ur proposed the following deficition of sensitivity 
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S 
j dsj 

dx 

where s is the closed-loop pole and x can be any open-loop parameter 
including gain, pole, or zero. While this definition does not give an 
infinite sensitivity under condition (ii), it still shows infinite and 
zero sensitivity under conditions (i) and (iii), respectively. 

- sX 
X 

j 

4 Chang has used the definition of sensitivity for a closed-loop 
pole s with respect to a parameter x as 

j 
S ds 

dx 
sxj f - 

(271 

This definition is better than those of E q s .  (1) and (261, since it 
yields finite sensitivity under conditions (ii) and (iii). But under 
conditions (i), when the multiplicity of the closed-loop pole is greater 

than one, the partial derivative of Eq. (27) does not exist. 
In the following section a definition of sensitivity which is more 

convenient for engineering applications, will be proposed and its effec- 

tiveness will be demonstrated. 



PROPOSED DEFINITIONS OF POLE SENSITIVI'rY 

In general, the relation between the variation of a closed-loop 

pole As. due to a variation of an open-loop parameter Ax can be express- 
ed in terms of a Taylor series as 

J 

2 3 Ax = 3&j + a2(Asj) + a3(& ) + ---- 
j 

1 drx 
r' dsi r where ar = I - 

J 

h%en the el~sed-loop pole is nf nniltiplicity m, the first m-1 coefficients 
of Eq. (28) vanish, (See Appendix 11) i.e. 

a = 0 .  al = a2 = ---- 
m- 1 

Under this condition Eq. (28) becomes 

r 
Ax = r=m ar(asj) - 

The single term approximation of this equation is 

m 
LUC = am(bj) 

1 dmx where a = - - m m! m '  
asi 

J 

When the parameter x is the open-loop gain K, the division of 
Eq. (31) by K yields 

a 

K K 
m 

-I 

due to the availability of the coefficients of Eq. (32) the sensitivity 
of the closed-loop pole s 
defined as 

with respect to the open-loop gain K may be 
j 

S (As . )m 
5K 
K 

SKj = - 
S (As . )m 

5K 
K 

SKj = - 
8 

(33 1 
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Using E q s .  (31) and (32), E q .  (34) then becomes 

Eq. 
the  

i t s  

d sm 
j 

(33) o r  (34), gives a measure of closed-loop pole deviat ion due t o  

f r ac t iona l  change of open-loop gain. For L!K small E q .  (33) approaches 

d i f f e r e n t i a l  form, 

where the gain v a r i a t i o n  d 1nK is i n  nepers. 

va r i a t ion  i n  db i s  des i red ,  E q .  (35) becomes 

If the  u n i t  of gain 

0.115mJ K S 
S? = 0.115 d(lnK 

When the parameter x i s  the  open-loop pole o r  zero, the sensi-  

t i v i t y  of the closed-loop pole with respect  t o  x i s  defined as 

Using E q .  (31), E q .  (37) 

E q .  (37) o r  (38) gives a 

becomes 

d sm 
j 

measure of t h e  closed-loop pole v a r i a t i o n  due 

t o  the  v a r i a t i o n  of the open-loop pole o r  zero. 

In essense, the  proposed s e n s i t i v i t i e s ,  E q s .  (34) and (38), are 

defined t o  be the  rec iproca l  of the f i r s t  non-zero coef f ic ien t  of the 

Taylor s e r i e s  expansion i n  E q .  (28). 
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Examining the form of E q s .  (34)  and (38) ,  one can easily see 
that these sensitivity functions do not suffer any difficulty under 

conditions (i), (ii) and (iii) described in previous section. 
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EVALUTION OF SENSITIVITIES 
If Eqs. (34) and (38) are used to evaluate the sensitivities 

j and Sxj respectively, it is necessary to obtain the m-th derivatives 
S S 

sK 
by repeated differentiation, a process which is very cumbersome for any 

second or higher order system. 
who suggested a method of determining the zeros of the impedance function 
due to incremental variations in the network element, the variation of 
the closed-loop pole due to the variation of the open-loop parameter 
can be obtained in a much easier manner. 

5 Following the approach of Papoulis , 

The characteristic equation of the closed-loop system shown in 

Fig. 1 is 

p(s; i Kq(sj  = 0 , (391 
where p(s) and q(s) are respectively the denominator and numerator 
polynomials of the open-loop function. 
functions defined in the third section are given by the following 
formulas: 

The values of various sensitivity 

G(s) 
1 + G(s) 

where T(s) = 

where 

closed-loop s to vary. 

4 is the pole of open-loop function whose variation causes the 
j 

where @ is the zero of open-loop function whose variation causes the 

closed- loop pole to vary. 
i 

The derivation of Eqs. (40) through (42)  are included in Appendix 
111. 
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The sensitivities evaluated using these formulas are indeed con- 

sistent with the proposed definitions in the third section. This is 

proved in Appendix IV. 
Although the derivation here is for unit feedback system, the 

results can be applied to non-unity feedback system with the aid of 

block diagram transformation. 
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EXAMPLES 
. Then 25 

s(s + 10) Example 1. Referring t o  Fig. 1, l e t  G(s) = 

25 which has a double pole at s = -5. Find the  sensi-  
2 j 

T ( s )  = 
(s + 5 )  

K '  t i v i t y  S 
From Eq. (40), t he  s e n s i t i v i t y  S s j  can be found as K 

=-25. (43) 2 
s--5 

25 I =-bs + 5) 2 

(s + 5) - 

L e t  t h e  gain of G(s) change+%, i. e .  AK =-1, then the  v a r i a t i o n  of the 

closed-loop pole can be obtained from 

= (0.04)(25) = 1 

As = f l  (44) 
j 

To check the r e l i a b i l i t y  of Eq.  (43), one e a s i l y  f inds  the new closed- 

loop t r a n s f e r  function 

' 24 = 
(s + 6)Cs + 4)- 

which shows the v a r i a t i o n  of the  closed-loop pole is indeed As = f 1. 
j 

Example 2. Referring t o  Fig.  3 , l e t  

1 . 2 2 - l ( 1  - 0.8332-l) 
G ( z )  = 

(1 - z -1) 2 

then 
1 . 2 ( 2  - 0.833) 

z(z  - 0.8) T(z) = 

which has a pole a t  t h e  o r ig in .  Considering a 20% change of open-loop 
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from K = 1.2 t o  K + AK = 1.44 f ind  S d  with s = 0 and 0.8. 
j 

Again use Eq. (40), 

= 1.25, 
z(z - 0.8) 1 z-o 

1.2(2 - 0.833) s .=o 
(45) 

= -0.0495. (46 1 - OS8) 3 z-0.8 

S 
and 

1 . 2 ( 2  - 0.833) = [(z - 0.8) 

The va r i a t ion  of the  closed-loop poles are obtained from 

giving, 

a t  s = 0, aSj = (0.20)(1.25) = 0.250 (47) j 

j j 
(48 1 at  s = 0.8, As = (0.20)(-0.0495) = 0.0099 

To check the  r e s u l t s ,  one f inds  the  new closed-loop t r a n s f e r  funct ion 

1.44(2 - 0.833 
T'(z) = (z + 0.249)(z - 0!809) 

ind ica t ing  

a t  s = 0, Asj = 0.249 
j (49 1 

(50) a t  s = 0.8, As = -0.009 
j j 

Eqs. (45) and (50) confirms the  r e s u l t s  of Eqs. (47) and (48) which 

were obtained by using the new s e n s i t i v i t y  function. 

10 
s(s + 11) Example 3. Using again Fig.  1, l e t  G(s) = 

. Find 10 which has a pole at  the  or ig in .  

the  s e n s i t i v i t y  of t he  closed-loop poles with respect  t o  open-loop pole 
The T ( s )  = (s + l)(s + 

a t  ai = 0. 

Using Eq. (41) 

= 1.11 I s = -1 

J-l =: [ s + l)s(s + 11) 
(s -i l ) ( s  + 10)s di 
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Assuming a change of open-loop pole A U i  = -0.2, the  va r i a t ions  of the 

closed loop pole are obtained from, by E q .  (37), 

S 

(Asj)m = A d i  Sa: 

giving 

Asj = (-0.2)(1.11) = -0.222 f o r  s = -1, (53) 
j 

As = (-0.2)(-0.111) = M.0222 f o r  s = -10 (54) 
j j 

To thsck t52 r e s t i l t s ,  one first abtains the nev clcsed-Imp traxlsfgr 

funct ion 
10 

(s + 1.222)(s + 9.98) T'( s )  = 

The exact va r i a t ions  of t he  closed loop poles  are therefore  

f o r  s = -1, 

f o r  s = -10. 
j 

j 

Asj = -0.222 

As = H . 0 2  
j 

which compare very w e l l  with E q s .  (53) and (54). 

(55) 

(56) 

The following t ab le  summarizes and compares the  r e s u l t s  of the  

above examples t o  the  r e s u l t s  one would have i f  the  conventional sensi-  

t i v i t y  funct ion,  E q .  (l), w a s  used. One, therefore ,  sees the  r e l i a b i l i t y  

of the proposed de f in i t i ons  of pole s e n s i t i v i t y .  
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CONCLUSION 
In this paper the inconvenience of the conventional definitions 

New definitions of Pole sensitivity have been examined and discussed. 

of pole sensitivity have been proposed. In essence, the proposed sensi- 
tivities are defined to be reciprocal of the first non-zero coefficient 

of the power series, Eq. (28). Convenient method of evaluating the new 
sensitivity function was explored. 
the merits and the reliability of new definitions. 

Examples were given to illustrate 

Further research to apply the proposed definition of pole sensi- 

tivity to network theory is under way. 
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the manuscript. 
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APPENDIX I. DERIVATION OF EQS. ( 4 )  THROUGH (7) 
Let the open-loop transfer function shown in Fig. 1 be 

G(s) = KQ(s) , where K is the gain of the open-loop function. 
the characteristic equation is: 

Thus 
P(S) 

p(s) + Kq(s) = 0 .  (57) 

(i) When the open-loop gain K is the variable parameter, the 
differentiation of Eq. (57) with respect to K, gives 

The sensitivity is then 

1 
d 1nK p'(s) + Kq'(s) s 

s; = d Ins - - -  Kq(s) - (59) 

At a particular closed-loop pole s 

to the gain K is 
the pole sensitivity with respect 

j' 

ks 
dsj 

=-A 9 (60) Kq(s) 
S 
j 

p'(s) + Kq'(s) s 
=s_i= -[ 

dK - sK 
K j 

Eq. (60) is the same as Eq. ( 4 ) .  

(ii) When the open-loop pole o(i with multiplicity r, is the 

variable parameter, Eq. (60) becomes 

pi(s)(s - + Kq(s) = 0, 

p(s)  where pi(s) = 

Differentiating Eq. (61) with respect to ai, 

r 
(s -ai) 

1: -1 i 
p'(s) + Kq'(s) ds = ripi(s)(s - di) d a i  

19 
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The sensitivity of the closed-loop pole s with respect to the open- 
j 

= s1 

K q ( s )  
P'(s) + Kq'(s) s - 

r S r i i  j i i  = SK 
s -ai 
j 

s -ai 
j 

This is Equation (5) 
(iii) hieii the cjpen-fcjcjp zero 

variable parameter, Eq. (57) becomes 

q(s) 
Ui where qi(s) = 

(6 - Pi) 
i' Differentiating Eq. ( 6 4 )  with respect to p 

The sensitivity of the closed-loop pole s 

zero pi is then 
with respect to the open-loop 

j 

ds 
S 

S j =  
pi 

This is Eq. ( 6 ) .  



APPENDIX 11. PROOF OF EQ. (29) 
In Fig. 1, the characteristic equation of the closed loop system 

is 

D ( s ,  x) = p + Kq = 0 (66) 
where x is a system parameter and s is Laplace transform variable. 
D has a root s,, of multiplicity m, one can write 

If 

D ( s )  = (s - S,)%~(S). (67) 
Note that 

Taking the differential of Eq. (67), 

dx = 0 
Ds + Dx ds 

or 
dx Ds 

DX 

- = - -  
ds 

where D and D are the derivatives of D with respect to s and x, re- 

spectively. By Eq. (68), one finds 
s X 

By repeatedly differentiating Eq. (69) and using Eq. (68), one easily 
find 

Therefore, 
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APPENDIX 111. DERIVATION OF EQS. (40) THROUGH (42)  

I n  Fig. 1, the open-loop t ransfer  funct ion i s  

The closed-loop transfer function i s  

which has  a pole s of mul t ip l i c i ty  m. 
j 

F i r s t  f ind  the s e n s i t i v i t y  o f t h e  closed-loop pole s with re- 

For a normal value of gain K ,  the  closed- 
j 

spect t o  open-loop gain K. 

loop pole s satisfies the equation. 
j 

p(sj)  + K q ( s j )  = 0 .  

I f  the gain K changes t o  K + M, t h e  new closed-loop pole s 

s a t i s f y  the  e quation 

must 
j 

p(s;) + (K + m)q(s;) = 0 

(75) 

J J J 
(s! - s J m  

Multiplying both s ides  of E q .  (76) by ’ ’ and rearranging the 

terms 

Since p + Kq contains (s - s . ) ~  as i ts  f ac to r ,  
J 

Therefore f o r  s m a l l  & = s ’  - s 
j j j  
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where s has been used i n  place of SI. E q .  (78) i s  the same as E q .  (40). 
J 

Next f ind  the  s e n s i t i v i t y  of the closed-loop pole s wih respect  1 
t o  t he  open-loop pole Pi. Write E q .  (75) as 

( S j  - di)Pi(S.) + W S j )  = 0, ( 7 9 )  
J 

where d. i s  the  open-loop pole and 
1 

For a change of d. by A d , ,  the new closed-loop pole must s a t i s f y  
1 

(s; -a i - Adi)pi(s;) + Kq(s;) = 0 

o r  

(si - 0Ci)pi(s!) + Kq(si]  = pi(s!)Adi. 
J J 

m Multiplying t h i s  E q .  (81) by (s! - sj)  , 
J 

(s! - s.jmpi(s!> 
(si - Sj)m = (si - di)p(s;) + K q ( s ! )  A A i  

J 

By the same method used t o  obtain Eq. (78), 

(83) 

j s-s 

E q .  (83) i s  the  same as E q .  (41) 

t o  the open-loop zero Bi can be derived i n  a similar manner. 
F ina l ly ,  t he  s e n s i t i v i t y  of t h e  closed-loop pole s with respect  

j 



APPENDIX I V .  THE EQUIVALENCE OF EQS. (33) Am (40) 

I n  Fig. 1 the cha rac t e r i s t i c  equation of the closed-loop system is 

p(s)  + Kq(s) = 0 .  (84) 
I f  K is the  var iab le  parameter then it may be wr i t t en  as 

CI 
L 

As +r- dK 
K = K o + 7  j 2' ds 2 

j j 

Then by Eqs. (32) and (33) 

where 

when m=2, Eqs (84) and (86) give 

2 IKq(s) S 

p ' ' ( s )  + Kq"(s) LSj 
J 

= -[(. - sj)2T(s)] S+S 
-I 

In  general, therefore ,  when m=m, one has Eqs. (84) and (86) 

3 j 

S s:-[s ] s = - [  m!Kq(s)  

Pm(s) + Kqrn(s) = 

s =  
j 
= - [(s - s . ) ? r ( s j  s = s  (90) 

j J 
This i s  the  same as Eq. (40) 

I n  a similar manner, one can show the equivalence of Eqs. (37) and 

24 
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